Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Anal Chim Acta ; 1306: 342513, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692783

RESUMEN

Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.


Asunto(s)
Cromatografía de Afinidad , Proteómica , Cromatografía de Afinidad/métodos , Proteómica/métodos , Humanos , Proteínas/aislamiento & purificación , Proteínas/análisis , Proteínas/química
2.
Physiol Plant ; 176(3): e14311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715208

RESUMEN

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Asunto(s)
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii , Citocininas , Resistencia a la Enfermedad , Nicotiana , Enfermedades de las Plantas , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Citocininas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Mutación
3.
ACS Chem Neurosci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655788

RESUMEN

Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 µL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 µmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.

4.
Plant Methods ; 20(1): 41, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493175

RESUMEN

BACKGROUND: Gaseous phytohormone ethylene levels are directly influenced by the production of its immediate non-volatile precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Owing to the strongly acidic character of the ACC molecule, its quantification has been difficult to perform. Here, we present a simple and straightforward validated method for accurate quantification of not only ACC levels, but also major members of other important phytohormonal classes - auxins, cytokinins, jasmonic acid, abscisic acid and salicylic acid from the same biological sample. RESULTS: The presented technique facilitates the analysis of 15 compounds by liquid chromatography coupled with tandem mass spectrometry. It was optimized and validated for 10 mg of fresh weight plant material. The extraction procedure is composed of a minimal amount of necessary steps. Accuracy and precision were the basis for evaluating the method, together with process efficiency, recovery and matrix effects as validation parameters. The examined compounds comprise important groups of phytohormones, their active forms and some of their metabolites, including six cytokinins, four auxins, two jasmonates, abscisic acid, salicylic acid and 1-aminocyclopropane-1-carboxylic acid. The resulting method was used to examine their contents in selected Arabidopsis thaliana mutant lines. CONCLUSION: This profiling method enables a very straightforward approach for indirect ethylene study and explores how it interacts, based on content levels, with other phytohormonal groups in plants.

5.
Plant Cell ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

6.
J Neurosci Methods ; 406: 110126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554786

RESUMEN

BACKGROUND: Electroporation is an effective technique for genetic manipulation of cells, both in vitro and in vivo. In utero electroporation (IUE) is a special case, which represents a fine application of this technique to genetically modify specific tissues of embryos during prenatal development. Commercially available electroporators are expensive and not fully customizable. We have designed and produced an inexpensive, open-design, and customizable electroporator optimized for safe IUE. We introduce NeuroPorator. METHOD: We used off-the-shelf electrical parts, a single-board microcontroller, and a cheap data logger to build an open-design electroporator. We included a safety circuit to limit the applied electrical current to protect the embryos. We added full documentation, design files, and assembly instructions. RESULT: NeuroPorator output is on par with commercially available devices. Furthermore, the adjustable current limiter protects both the embryos and the uterus from overcurrent damage. A built-in data acquisition module provides real-time visualization and recordings of the actual voltage/current pulses applied to each embryo. Function of NeuroPorator has been demonstrated by inducing focal cortical dysplasia in mice. SIGNIFICANCE AND CONCLUSION: The simple and fully open design enables quick and cheap construction of the device and facilitates further customization. The features of NeuroPorator can accelerate the IUE technique implementation in any laboratory and speed up its learning curve.


Asunto(s)
Electroporación , Técnicas de Transferencia de Gen , Animales , Electroporación/métodos , Electroporación/instrumentación , Femenino , Ratones , Técnicas de Transferencia de Gen/instrumentación , Embarazo , Diseño de Equipo , Útero , Embrión de Mamíferos
7.
New Phytol ; 242(3): 988-999, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375943

RESUMEN

Seasonal dynamics of root growth play an important role in large-scale ecosystem processes; they are largely governed by growth regulatory compounds and influenced by environmental conditions. Yet, our knowledge about physiological drivers of root growth is mostly limited to laboratory-based studies on model plant species. We sampled root tips of Eriophorum vaginatum and analyzed their auxin concentrations and meristem lengths biweekly over a growing season in situ in a subarctic peatland, both in surface soil and at the permafrost thawfront. Auxin concentrations were almost five times higher in surface than in thawfront soils and increased over the season, especially at the thawfront. Surprisingly, meristem length showed an opposite pattern and was almost double in thawfront compared with surface soils. Meristem length increased from peak to late season in the surface soils but decreased at the thawfront. Our study of in situ seasonal dynamics in root physiological parameters illustrates the potential for physiological methods to be applied in ecological studies and emphasizes the importance of in situ measurements. The strong effect of root location and the unexpected opposite patterns of meristem length and auxin concentrations likely show that auxin actively governs root growth to ensure a high potential for nutrient uptake at the thawfront.


Asunto(s)
Proteínas de Arabidopsis , Meristema , Ácidos Indolacéticos/farmacología , Estaciones del Año , Raíces de Plantas/metabolismo , Ecosistema , Suelo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Sci Rep ; 14(1): 4187, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378833

RESUMEN

Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, ß, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in ß-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in ß-HCH and control rhizosphere samples but was lowest in δ-HCH samples.


Asunto(s)
Alnus , Contaminantes del Suelo , Hexaclorociclohexano/análisis , Biodegradación Ambiental , ARN Ribosómico 16S/genética , Contaminantes del Suelo/análisis , Suelo
9.
ACS Chem Neurosci ; 15(3): 582-592, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38194490

RESUMEN

Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.


Asunto(s)
Enfermedad de Alzheimer , Deficiencias en la Proteostasis , Tauopatías , Humanos , Triptófano , Quinurenina , Suero , Enfermedad de Alzheimer/diagnóstico , Biomarcadores
10.
J Biotechnol ; 381: 27-35, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190851

RESUMEN

Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7-23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1-2 mg/l IBA) compared to the pig manure (equivalent to 0.5-1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.


Asunto(s)
Chlorella , Microalgas , Porcinos , Animales , Estiércol , Biomasa , Ácido Acético/metabolismo , Microalgas/metabolismo , Carbono/metabolismo , Ácidos Indolacéticos/metabolismo
11.
J Exp Bot ; 75(3): 1081-1097, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37910663

RESUMEN

Waterlogging leads to hypoxic conditions in the root zone that subsequently cause systemic adaptive responses in the shoot, including leaf epinasty. Waterlogging-induced epinasty in tomato has long been ascribed to the coordinated action of ethylene and auxins. However, other hormonal signals have largely been neglected, despite evidence of their importance in leaf posture control. To cover a large group of growth regulators, we performed a tissue-specific and time-dependent hormonomics analysis. This revealed that multiple hormones are differentially affected throughout a 48 h waterlogging treatment, and that leaf age determines hormone homeostasis and modulates their changes during waterlogging. In addition, we distinguished early hormonal signals that contribute to fast responses to oxygen deprivation from those that potentially sustain the waterlogging response. We found that abscisic acid (ABA) levels peak in petioles within the first 12 h of the treatment, while its precursors only increase much later, suggesting that ABA transport is altered. At the same time, cytokinins (CKs) and their derivatives drastically decline during waterlogging in leaves of all ages. This drop in CKs possibly releases the inhibition of ethylene- and auxin-mediated cell elongation to establish epinastic bending. Auxins themselves rise substantially in the petiole of mature leaves, but mostly after 48 h of root hypoxia. Based on our hormone profiling, we propose that ethylene and ABA might act synergistically as an early signal to induce epinasty, while the balance of indole-3-acetic acid and CKs in the petiole ultimately regulates differential growth.


Asunto(s)
Solanum lycopersicum , Etilenos/farmacología , Reguladores del Crecimiento de las Plantas/fisiología , Ácidos Indolacéticos/farmacología , Ácido Abscísico , Citocininas , Hojas de la Planta , Hormonas
12.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044809

RESUMEN

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Asunto(s)
Arabidopsis , Nucleósidos , Nucleósidos/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
13.
Anal Bioanal Chem ; 416(1): 125-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872415

RESUMEN

In situ separation and visualization of synthetic and naturally occurring isomers from heterogeneous plant tissues, especially when they share similar molecular structures, are a challenging task. In this study, we combined the ion mobility separation with desorption electrospray ionization mass spectrometry imaging (DESI-IM-MSI) to achieve a direct separation and visualization of two synthetic auxin derivatives, auxinole and its structural isomer 4pTb-MeIAA, as well as endogenous auxins from Arabidopsis samples. Distinct distribution of these synthetic isomers and endogenous auxins in Arabidopsis primary roots and hypocotyls was achieved in the same imaging analysis from both individually treated and cotreated samples. We also observed putative metabolites of synthetic auxin derivatives, i.e. auxinole amino acid conjugates and hydrolysed 4pTb-MeIAA product - 4pTb-IAA, based on their unique drifting ion intensity patterns. Furthermore, DESI-IM-MSI-revealed abundance of endogenous auxins and synthetic isomers was validated by liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that DESI-IM-MSI could be used as a robust technique for detecting endogenous and exogenous isomers and provide a spatiotemporal evaluation of hormonomics profiles in plants.


Asunto(s)
Arabidopsis , Espectrometría de Masa por Ionización de Electrospray/métodos , Ácidos Indolacéticos/análisis , Isomerismo , Estructura Molecular
14.
Neurobiol Dis ; 190: 106383, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114051

RESUMEN

High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia (FCD) type II. FCD was induced in mice by the expression of the human pathogenic mTOR gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, i.e., gamma, ripples, and fast ripples up to 800 Hz. Gamma-ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCD type II generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.


Asunto(s)
Epilepsia , Displasia Cortical Focal , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Electroencefalografía , Serina-Treonina Quinasas TOR
15.
Anal Chim Acta ; 1285: 342010, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057057

RESUMEN

BACKGROUND: The determination of plant hormones is still a very challenging analytical discipline, mainly due to their low concentration in complex plant matrices. Therefore, the involvement of very sensitive high-throughput techniques is required. Cytokinins (CKs) are semi-polar basic plant hormones regulating plant growth and development. Modern methods for CK determination are currently based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which enables the separation of CK isomeric forms occurring endogenously in plants. Here, ultra-high performance supercritical fluid chromatography coupled with tandem mass spectrometry (UHPSFC-MS/MS) was used for the simultaneous determination of 37 CK metabolites. RESULTS: The chromatographic conditions were tested on three different columns with various retention mechanisms. Hybrid silica modified with 2-picolylamine was selected as the stationary phase. Several parameters such as column temperature, back pressure regulation, mobile phase composition and make-up solvent were investigated to achieve efficient separation of CK isomers and reasonable sensitivity. Compared to UHPLC-MS/MS, a 9-min chromatographic analysis using a mobile phase of supercritical CO2 and 5 mM ammonia in methanol represents a three-fold acceleration of total run time. The quantification limit of UHPSFC-MS/MS method was in the range of 0.03-0.19 fmol per injection and the method validation showed high accuracy and precision (below 15 % for most analytes). The method was finally applied to the complex plant matrix of the model plant Arabidopsis thaliana and the obtained profiles of CK metabolites were compared with the results from the conventional UHPLC-MS/MS method. SIGNIFICANCE: The presented work offers a novel approach for quantification of endogenous CKs in plants. Compared to the conventional UHPLC-MS/MS, the total run time is shorter and the matrix effect lower for the key CK metabolites. This approach opens the opportunity to utilize UHPSFC-MS/MS instrumentation for targeted plant hormonomics including other plant hormone families.


Asunto(s)
Cromatografía con Fluido Supercrítico , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Citocininas , Reguladores del Crecimiento de las Plantas , Cromatografía con Fluido Supercrítico/métodos , Cromatografía Líquida de Alta Presión/métodos , Plantas
16.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991945

RESUMEN

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Árboles , Lactonas , Regulación de la Expresión Génica de las Plantas
17.
J Environ Radioact ; 270: 107304, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871537

RESUMEN

Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.


Asunto(s)
Arabidopsis , Monitoreo de Radiación , Rayos gamma , Plantones/efectos de la radiación , Plantas
18.
Front Plant Sci ; 14: 1228060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692417

RESUMEN

Introduction: Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods: In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results: Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions: These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.

19.
BMC Plant Biol ; 23(1): 445, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735356

RESUMEN

BACKGROUND: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response. RESULTS: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley. CONCLUSIONS: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.


Asunto(s)
Hordeum , Hordeum/genética , Sequías , Multiómica , Percepción
20.
Plant J ; 116(6): 1784-1803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37715981

RESUMEN

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.


Asunto(s)
Micorrizas , Ozono , Populus , Micorrizas/fisiología , Simbiosis , Señales (Psicología) , Raíces de Plantas/metabolismo , Ecosistema , Populus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...